Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 7.5 : Integrals Involving Roots
3. Evaluate the integral ∫t−2t−3√2t−4+2dt.
Show All Steps Hide All Steps
Start SolutionThe substitution we’ll use here is,
u=√2t−4 Show Step 2Now we need to get set up for the substitution. In other words, we need so solve for t and get dt.
t=12u2+2⇒dt=udu Show Step 3Doing the substitution gives,
∫t−2t−3√2t−4+2dt=∫12u2+2−212u2+2−3u+2(u)du=∫u3u2−6u+8du Show Step 4This integral requires partial fractions to evaluate.
However, we first need to do long division on the integrand since the degree of the numerator (3) is higher than the degree of the denominator (2). This gives,
u3u2−6u+8=u+6+28u−48(u−2)(u−4)The form of the partial fraction decomposition on the third term is,
28u−48(u−2)(u−4)=Au−2+Bu−4Setting the coefficients equal gives,
28u−48=A(u−4)+B(u−2)Using the “trick” to get the coefficients gives,
u=4:64=2Bu=2:8=−2A⇒A=−4B=32The integral is then,
∫u3u2−6u+8du=∫u+6−4u−2+32u−4du=12u2+6u−4ln|u−2|+32ln|u−4|+c Show Step 5The last step is to now do all the back substitutions to get the final answer.
\int{{\frac{{{u^3}}}{{{u^2} - 6u + 8}}\,du}} = \require{bbox} \bbox[2pt,border:1px solid black]{{t - 2 + 6\sqrt {2t - 4} - 4\ln \left| {\sqrt {2t - 4} - 2} \right| + 32\ln \left| {\sqrt {2t - 4} - 4} \right| + c}}